Rigid Plate Transformations to Support PPP and Absolute Positioning in Africa

Richard Stanaway & Craig Roberts

School of Surveying and Spatial Information Systems University of New South Wales, Australia

FIG Working Week, Marrakech, Morocco, 18-22 May 2011

CORS Distribution in Africa

Sparse GNSS CORS infrastructure overcome by use of PPP and Global Differential Services

image: Centro GNSS de Canarias www.canarygnsscenter.org

	tioning	comico	
RABT	0.00	0.002	2 0.003
Static	on σ East (m	n) σ North (m)	σ Up (m)

ITRF positioning services (examples)

Kinematic coordinates illustrated

YKRO – IGS Station (Yamoussoukro, Cote d' Ivorie) From IGS web-site

Kinematic coordinates illustrated

YKRO – IGS Station (Yamoussoukro, Cote d' Ivorie) From IGS web-site

Principal Plates and Plate Boundaries in Africa

Stability of the Nubian Plate

ITRF Site velocity

Deformation rates computed from ITRF2008 GPS SSC Solution http://itrf.ensg.ign.fr

Divergence between ITRF (Epoch 2009) and ITRF (epoch of measurement)

Nubian and Arabian Plate Boundary today

image: JPL NASA SRTM

Nubian and Arabian Plate Boundary 30 Ma

Rigid Plate Model

Euler Poles to Cartesian rotation rates

 $\Omega_{X} = \operatorname{COS}(\Phi) \operatorname{COS}(\Lambda) \omega$ $\Omega_{Y} = \operatorname{COS}(\Phi) \operatorname{SIN}(\Lambda) \omega$ $\Omega_{Z} = \operatorname{SIN}(\Phi) \omega$

ITDE200E African					
TIRF2005 African					
plate parameters					
(Altamimi <i>et al.</i> 2007)					

Plate	Euler pole of rotation			Equivalent Cartesian angular velocity		
	Φ(°)	Λ (°)	ω (°/Ma)	Ω_X (Rad/Ma)	Ω_Y (Rad/Ma)	Ω_Z (Rad/Ma)
Arabia	49.6	5.1	0.579	0.006518	0.000577	0.007700
Eurasia	56.3	-96.0	0.261	-0.000263	-0.002512	0.003791
Nubia	50.0	-82.5	0.269	0.000394	-0.002995	0.003594
Somalia	53.7	-89.5	0.309	0.000026	-0.003196	0.004344

Kinematic to Static transformation

$$\begin{bmatrix} X_{0} \\ Y_{0} \\ Z_{0} \end{bmatrix} = \begin{bmatrix} T_{X} \\ T_{Y} \\ T_{Z} \end{bmatrix} + S \cdot \begin{bmatrix} X_{t} \\ Y_{t} \\ Z_{t} \end{bmatrix} + \begin{bmatrix} \Omega_{Y} Z_{t} - \Omega_{Z} Y_{t} \\ \Omega_{Z} X_{t} - \Omega_{X} Z_{t} \\ \Omega_{X} Y_{t} - \Omega_{Y} X_{t} \end{bmatrix} \cdot (t_{0} - t) \cdot 1E - 6$$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} \Omega_{Y} Z_{t} - \Omega_{X} Z_{t} \\ \Omega_{X} Y_{t} - \Omega_{Y} X_{t} \end{bmatrix} \cdot (t_{0} - t) \cdot 1E - 6$$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\$$

"Static" coordinates at reference epoch "Measured" ITRF coordinates

 $X_{0} = X_{t} + (\Omega_{Y}Z_{t} - \Omega_{Z}Y_{t}).(t_{0} - t) \cdot 1\text{E-6}$ $Y_{0} = Y_{t} + (\Omega_{Z}X_{t} - \Omega_{X}Z_{t}).(t_{0} - t) \cdot 1\text{E-6}$ $Z_{0} = Z_{t} + (\Omega_{X}Y_{t} - \Omega_{Y}X_{t}).(t_{0} - t) \cdot 1\text{E-6}$ Simplified 3-parameter equations Kinematic ITRF to Static ITRF (no scale or translation parameters)

Improved coordinate consistency using a 3 parameter rigid plate transformation

Limitations of a Rigid Plate Model

Intraplate deformation not accounted for (usually small magnitude < 1 mm/yr anyway)

Fails near plate boundaries (requires additional modelling of locked faults)

Coseismic and Postseismic deformation not modelled

Thank you

Merci